

Phil Sumrall
Advanced Planning Manager
Ares Projects
Marshall Space Flight Center, NASA

Introduction

- The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit
- Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon
- This is a snapshot of development. Ares V is early in the requirements formulation stage of development pending a planned authority to proceed (ATP) from NASA in late 2010.
- The Ares V vehicle will be considered a national asset, opening new worlds and creating unmatched opportunities for human exploration, science, national security, and space business
- My goal today is to update you on the status of the Ares V vehicle

NASA's Exploration Fleet

Our Exploration Fleet What Will the Vehicles Look Like?

Ares Vehicles: Commonality and Heritage Hardware

LCCR/MCR-Approved Point-of-Departure

Ares V Launch Profile For Lunar Mission

ESAS (2005) to LCCR (2008) Major Events

Original ESAS Capability

- 45.0 mT Lander
- 20.0 mT CEV
- No Loiter in LEO
- 8.4m OML
- 5 SSMEs / 2J2S

CY-06 Budget Trade to Increase

- Ares I / Ares V Commonality
- · Ares I: 5 Seg RSRB / J2-X instead of Air-Start SSME
- Ares V: 1 J2-X

Detailed Cost Trade of SSME vs RS-68

- ~\$4.25B Life Cycle Cost Savings for
- 5 Engine Core
- Increased Commonality with Ares I Booster
- 30-95 Day LEO Loiter Assessed

IDAC 3 Trade Space

- Lunar Architecture Team 1/2 (LAT) Studies
- Mission Delta V's increased
- Increase Margins From TLI Only to Earth through TLI
- Loiter Penalties for 30 Day Orbit Quantified

EDS Diameter Change from 8.4m to 10m

- **Lunar Architecture** Team 1/2 (LAT) Studies
- Lunar /Mars Systems Benefits
- Tank Assembly **Tooling** Commonality

Incorporate Ares I **Design Lessons** Learned / **Parameters**

- Core Engine / SRB Trades to Increase **Design Margins**
- Increase Subsystem Mass Growth Allowance (MGA)

Recommended Option

- 6 Core Engines
- 5.5 Segment **PBAN**

Updated Capability • 45.0t Lander

- 20.2t CEV
- ~6t Perf. Margin
- 4 Day LEO Loiter
- Ares I Common MGAs
- **Booster Decision** Summer 2010

220 Concepts **Evaluated**

320 Concepts **Evaluated**

730 Concepts **Evaluated**

460 Concepts **Evaluated**

2005

2006

2007

2008

Orion ATP

Ares I SRR

Orion SRR

Ares I SDR

Ares V MCR

LCCR Trade Space

Common Design Features

Composite Dry Structures for Core Stage, EDS & Shroud

Metallic Cryo Tanks for Core Stage & EDS

RS-68B Performance:

lsp = 414.2 s

Thrust = 797K lbf @ vac

J-2X Performance:

lsp = 448.0 s

Thrust = 294K lbf @ vac

Shroud Dimensions:

Barrel Dia. = 10 m

Usable Dia. = 8.8 m

Barrel Length = 9.7 m

1.5 Launch TLI Capability Cargo TLI Capability

Recommend for New POD

Approved New Point of Departure

- Vehicle 51.00.48 -

Vehicle 51.00.48 approved

- 6 Engine Core, 5.5 Segment PBAN Steel Case Booster
- Provides Architecture Closure with Margin
- High Commonality with Ares I

Vehicle 51.00.47 with Composite HTPB Booster Retained as Ares V Option

- Final Decision on Ares V Booster at Constellation Lunar SRR (June 2010)
- Additional Performance Capability if needed for Margin or requirements
- Allows for competitive acquisition environment for booster
- Fund key technology areas: composite cases, HTPB propellant characterization

Ares V Utilization: A National Asset

** Most numbers for Saturn V reference the Apollo 15 Mission; ACO 09-FEB-2007 ** Numbers for Ares V reference the 51.00.39 mission: ACO 10-JAN-2008

Payload Shroud Point Of Departure

Point of Departure (Biconic)

Leading Candidate (Ogive)

- Composite sandwich construction (Carbon-Epoxy face sheets, Al honeycomb core)
- Painted cork TPS bonded to outer face sheet with RTV
- Payload access ports for maintenance, payload consumables and environmental control (while on ground)

Mass: 9.1 mT (20.0k lbm) **POD Geometry:** Biconic Design: Quad sector

Barrel Diameter: 10 m (33 ft) Barrel Length: 9.7 m (32 ft) Total Length: 22 m (72ft)

Thrust Rail Vertical Separation System Payload umbilical separation

Approved for Public Release; Distribution is Unlimited

The Ares V Shroud Compared

Ares V Payload vs. Altitude and Inclination

Ares V Payload vs. Altitude & Inclination (LV 51.00.39)

Ares V Payload Mass vs. C3 Energy

Ares V Performance for Selected Trajectories

Mission Profile	Target	Constellation	POD Shroud	Extended Shroud			
		Payload (lbm)	Payload (mt)	Payload (Ibm)	Payload (mt)		
1) LEO (@29º inclination)	241 x 241 km	315,000	143	313,000	142		
2) GEO	Transfer DV 14,100 ft/s	77,000	35	76,000	34.5		
Cargo Lunar Outpost (TLI Direct), Reference	C3 of -1.8 km ² /s ²	126,000	57	125,000	57		
4) Sun-Earth L2 Transfer Orbit Injection	C3 of -0.7 km ² /s ²	124.000	56.5	123,000	56		
5) Earth-Moon L2 Transfer Orbit Injection	C3 of -1.7 km ² /s ²	126,000	57.0	125,000	57		
6) GTO Injection	Transfer DV 8,200 ft/s	153,000	69.5	152,000	69		
7) Mars Cargo (TMI Direct)	C3 of 9 km ² /s ²	106,000	48	105,000	48		

Current Activities

- Ares V concept definition/requirements development industry proposals
- Structural test approach
- Structural test articles
- Ares V-Y flight test objectives
- Ares V aerodynamic characterization
- Manufacturing, test, and launch facilities
- Core Stage and EDS propulsion test approach and facilities assessment
- Technology prioritization
- Ares V Cost threat risk assessment
- Ares V performance risk assessment

Ares V Planning Calendar

Ares V	2009	2010	201	1	2012	2013	2	014	2015	2016	2017	2018	2019	2020	2021	
AIO3 V	FY09	FY10	FY11	ı	Y12	FY13	FY1	4	FY15	FY16	FY17	FY18	FY19	FY20	FY21	
Level I/II Milestones		SRR														
Altair Milestones (for reference only)			SRR			PDR ▼			CD V	R 7				DCR Altair 1 Altair 2	Altair 3 Altair 4	
Ares V Project Milestones			SR		OR/PNA	R	PDR/	NAR 7			DR		Ares V-Y	R 7		
Systems Engineering and Integration	STUDY											*				
			D	FINI	TION				550							
	Concept Review	√ ∨	∇ CoDR						DESIG	in	DI	VELOPME	NT			
Engine	ering Assessmen	PRR	CoDR											OPE	RATIONS	\equiv
	R	AC 1 RAC 2														
			RAC 3	DAC 1												
				DAC												
Core Stage					RR ▽	PDF	•			CDR						
Core Stage Engine (RS-68B)					RR	PC	R 7			CDR						
Booster					RR ▽	P	DR V			CDR						
Earth Departure Stage					RF.		PDR			CDR						
Earth Departure Stage Engine					R	R 7	PDR			CDR ▽						
Payload Shroud						RR	PDR ▽			CD	2					
Instrument Unit						RR ▽	PDR	Ł		CD.	oft 7					
Systems Testing									MPTA CS ♥	MPTA EDS						

Conclusions

- Ares V current concept (51.00.48) exceeds Saturn V mass capability to trans lunar injection by almost 40% alone or almost 60% with Ares I
- This concept vehicle can meet current Human Lunar Return requirements with ~6 mT of Margin
- 2009 activities focused on refining vehicle and operational concept, refining requirements, working with potential non-Constellation users to understand vehicle/payload benefits and design issues
- Ares V is sensitive to loiter time, attitude, power, and altitude requirements, in addition to payload performance